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Abstract 

Autonomous operation of a vehicle on a road calls for understanding of various events involving 
the motions of the vehicles in its vicinity. In this paper we show how a moving vehicle which 
is carrying a camera can estimate the relative motions of nearby vehicles. We present a model 
for the motion of the observing vehicle, and show how to "stabilize" it, i.e. to correct the image 
sequence so that transient motions resulting from bumps, etc. are removed and the sequence 
corresponds more closely to the sequence that would have been collected if the motion had been 
smooth. We also model the motions of nearby vehicles and show how to detect their motions 
relative to the observing vehicle. We present results for several road image sequences which 
demonstrate the effectiveness of our approach. 
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1    Introduction 

Autonomous operation of a vehicle on a road calls for understanding of various events involving 
the motions of the vehicles in its vicinity. In normal traffic flow, most of the vehicles on a road 
move in the same direction without major changes in their distances and relative speeds. When 
a nearby vehicle deviates from this norm (e.g. when it passes or changes lanes), or when it is 
on a collision course, some action may need to be taken. In this paper we show how a vehicle 
carrying a camera can estimate the relative motions of nearby vehicles. 

Understanding the relative motions of vehicles requires modeling both the motion of the 
observing vehicle and the motions of the other vehicles. We represent the motions of vehicles 
using a Darboux motion model that corresponds to the motion of an object moving along a 
smooth curve that lies on a smooth surface. We show that deviations from Darboux motion 
correspond primarily to small, rapid rotations around the axes of the vehicle. These rotations 
arise from the vehicle's suspension elements in response to unevenness of the road. We estimate 
bounds on both the smooth rotations due to Darboux motion (from highway design principles) 
and the non-smooth rotations due to the suspension. We show that both types of rotational 
motion, as well as the non-smooth translational component of the motion (bounce), are small 
relative to the smooth (Darboux) translational motion of the vehicle. 

This analysis is used to model the motions of both the observer and observed vehicles. We 
use the analysis to show that only the rotational velocity components of the observer vehicle 
are important. On the other hand, the rotational velocity components of an observed vehicle 
are negligible compared to its translational velocity. As a consequence we need to estimate the 
rotational velocity components only for the observing vehicle. This is the case even when an 
observed vehicle is changing its direction of motion relative to the observing vehicle (turning 
or changing lanes); the turn shows up as a gradual change in the direction of the relative 
translational velocity. 

An important consequence of the Darboux motion model is that for a fixed forward-looking 
camera mounted on the observer vehicle the direction of translation (and therefore the position 
of the focus of expansion (FOE)) remains the same in the images obtained by the camera. We 
use this fact to estimate the observing vehicle's rotational velocity components; this is done by 
finding the rotational flow which, when subtracted from the observed flow, leaves a radial flow 
pattern (radiating from the FOE) of minimal magnitude. 

We describe the motion field using full perspective projection, estimate its rotational com- 
ponents, and derotate the field. The flow fields of nearby vehicles are then, under the Darboux 
motion model, pure translational fields. We analyze the motions of the other vehicles under weak 
perspective projection, and derive their motion parameters. We present results for several road 
image sequences obtained from cameras carried by moving vehicles. The results demonstrate 
the effectiveness of our approach. 

In the next section we present motion models for road vehicles, discuss ideal and real vehicle 
motion, and analyze the relative sizes of the smooth and non-smooth velocity components. In 
Section 3 we discuss the image motion and describe a way to estimate the necessary derotation. 



Figure 1: The Darboux frame moves along the path T which lies on the surface S. 

Section 4 describes methods of estimating nearby vehicle motions from the normal flow field. 
Section 5 presents experimental results for several sequences taken at different locations. In 
Section 6 we review some prior work on various topics that are related to this paper, involving 
road detection, vehicle detection, and motion analysis, and compare them with the approach 
presented in this paper. 

2    Motion Models of Highway Vehicles 

The ideal motion of a ground vehicle does not have six degrees of freedom. If the motion is 
(approximately) smooth it can be described as motion along a smooth trajectory T lying on a 
smooth surface S. Moreover, we shall assume that the axes of the vehicle (the fore/aft, crosswise, 
and up/down axes) are respectively parallel to the axes of the Darboux frame defined by V and 
E. These axes are defined by the tangent t to T (and S), the second tangent v to S (orthogonal 
to t), and the normal s to E (see Figure 1). Our assumption about the axes is reasonable for 
the ordinary motions of standard types of ground vehicles; in particular, we are assuming that 
the first two vehicle axes are parallel to the surface and that the vehicle's motion is parallel to 
its fore/aft axis (the vehicle is not skidding). 

Consider a point O moving along a (space) curve T. There is a natural coordinate system 
Otnb associated with V, defined by the tangent t, normal ii, and binormal b of T. The triple 
(t, ii, b) is called the moving trihedron or Frenet-Serret coordinate frame. We have the Frenet- 
Serret formulas [22] 

2' t = /en, n = —Act + rb, 

where K is the curvature and r the torsion of T. 

b = —rn (1) 

When the curve T lies on a smooth surface S, it is more appropriate to use the Darboux 
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frame (t, v, s) [22]. We take the first unit vector of the frame to be the tangent t of Y and 
the surface normal s to be the third frame vector; finally we obtain the second frame vector as 
v = s x t (see Figure 1). Note that t and v lie in the tangent plane of E. Since the vector t 
belongs to both the Otnb and Otvs frames, they differ only by a rotation around t, say through 
an angle iß = tß(s). We thus have 

cos iß   sin iß 
— sin iß   cos iß (2) 

The derivatives of t,v, s with respect to arc length along T can be found from (1) and (2): 

t   = KgV - KnS,      V   = —Kgt + TgS,      S   = Knt - TgV (3) 

where 

Kg = KCOStß,     Kn = KSmiß,     Tg=T+—] 
<hß_ 
ds 

Kg is called the geodesic curvature, Kn is called the normal curvature, and rg is called the 
(geodesic) twist. 

It is well known that the instantaneous motion of a moving frame is determined by its 
rotational velocity ö and the translational velocity T of the reference point of the frame. The 
translational velocity T of 0 is just t and the rotational velocity of the Otvs frame is given by 
the vector 

Wd = Tgt + KnV + KgS. 

Hence the derivative of any vector in the Otvs frame is given by the vector product of ü^ and 
that vector. It can be seen that the rate of rotation around t is just rg, the rate of rotation 
around v is just Kn, and the rate of rotation around s is just Kg. 

If, instead of using the arc length s as a parameter, the time t is used, the rotational velocity 
ö?d and translational velocity T are scaled by the speed v(t) = ds/dt of O along T. 

2.1    Real "vehicle Motion 

We will use two coordinate frames to describe vehicle motion. The "real" vehicle frame C£r)( 
(which moves non-smoothly, in general) is defined by its origin C, which is the center of mass of 
the vehicle, and its axes: C£ (fore/aft), Cr\ (crosswise), and CC, (up/down); and the ideal vehicle 
frame Otvs (the Darboux frame), which corresponds to the smooth motion of the vehicle. 

The motion of the vehicle can be decomposed into the motion of the Otvs frame and the 
motion of the C£r)( frame relative to the Otvs frame. As we have just seen, the rotational 
velocity of the Otvs (Darboux) frame is V3A = v{rgt + /cnv + Kgs) and its translational velocity 
is vt. We denote the rotational velocity of the C^r/C (vehicle) frame by «„ and its translational 
velocity by Tv. 

The position of the C£r)( frame relative to the Otvs frame is given by the displacement vector 
dv/d between C and O, and the relative orientation of the frames is given by an orthogonal 
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rotational matrix (matrix of direction cosines) which we denote by Ry/d- The translational 
velocity of the vehicle (the velocity of C) is the sum of three terms: (i) the translational velocity 

of the Darboux frame vt, (ii) the translational velocity Tv/d = dv/d, and (iii) the displacement 
vüJd x dvjd due to rotation of C in the Otvs frame.  The translational velocity of the vehicle 

expressed in the Otvs frame is thus vujd x dv/d + vt + dv/d; its translational velocity in the C£r)( 
frame is . 

fv = Rl/d(vud x dvjd + vt + dv/d). (4) 

Similarly, the rotational velocity of C£rj( is the sum of two terms: (i) the rotational velocity 
vR^ßUd of the Otvs frame, and (ii) the rotational velocity ÜJv/d, which corresponds to the skew 

matrix üv/d = RLdRv/d- The rotational velocity of the C£rj( frame expressed in the Otvs frame 
is thus vud + Rv/dUv/d; the corresponding expression in the C£r)( frame is 

uv = vRl/ßd + üv/d- (5) 

Rotations around the fore/aft, sideways, and up/down axes of a vehicle are called roll, pitch, 
and yaw, respectively. In terms of our choice of the real vehicle coordinate system, these are 
rotations around the £, 77, and £ axes. 

2.2    Departures of Vehicle Motion from Smoothness 

The motion of a ground vehicle depends on many factors: the type of intended motion; the 
speed of the vehicle; the skill of the driver; the size, height and weight of the vehicle; the type 
and size of the tires (or tractor treads), and the nature of the suspension mechanism, if any; 
and the nature of the surface on which the vehicle is being driven. These factors tend to remain 
constant; they undergo abrupt changes only occasionally, e.g. if a tire blows out, or the vehicle 
suddenly brakes or swerves to avoid an obstacle, or the type of surface changes. Such events 
may produce impulsive changes in the vehicle's motion, but the effects of these changes will 
rapidly be damped out. In addition to these occasional events, "steady-state" non-smoothness 
of a ground vehicle's motion may result from roughness of the surface. 

A ground vehicle drives over roads that have varying degrees of roughness [2]. The roughness 
consists primarily of small irregularities in the road surface. In discussing the effects of the 
roughness of the road on the motion of a ground vehicle we will assume, for simplicity, an 
ordinary, well balanced four-wheeled vehicle moving on a planar surface that is smooth except 
for occasional small bumps (protrusions). The bumps are assumed to be "small" relative to the 
size of the wheels, so that the effect of a wheel passing over a bump is impulsive. (We could also 
allow the surface to have small depressions, but a large wheel cannot deeply penetrate a small 
depression, so the depressions have much smaller effects than the bumps.) 

As the vehicle moves over road surface, each wheel hits bumps repeatedly. We assume that 
the vehicle has a suspension mechanism which integrates and damps the impulsive effects of 
the bumps. Each suspension element is modeled by a spring with damping; its characteristic 
function is a sine function multiplied by an exponential damping function (see [24, 34]).We 



Figure 2: A possible motion of the base of a vehicle as the vehicle hits a bump. 

assume that the suspension elements associated with the four wheels are independent of each 
other and are parallel to the vertical axis of the vehicle. 

The vehicle may hit new bumps while the effects of the previous bumps are still being 
felt. Each hit forces the suspension and adds to the accumulated energy in the spring; thus 
it can happen that the suspension is constantly oscillating, which has the effect of moving the 
corners of the vehicle up and down. The period of oscillation is typically on the order of 0.5 sec 
(see [24, 34]). In general, it takes several periods to damp out the spring; for example, the 
damping ratio provided by shock absorbers of passenger cars is in the range 0.2 — 0.4. The 
maximum velocity of the oscillation is typically on the order of 0.1 m/sec. 

Consider the coordinate system Cxyz with origin at the center of mass C of the vehicle (see 
Figure 2). Let u,- be the velocity corner C{ of the vehicle, and let the length and width of the 
vehicle be L and W. From the u,-'s we can compute the angular velocity matrix 

0       — Cc>, w« \ 
n = 

—w„ 
0      -w- 
vx 0 

( 0 0 
0 0 

\ (t>4 - Vz)/L   (v3 - v2)/W 

(v3~v4)/L > 
(v2 -v3)/W 

0 ) 
(6) 

Note that any of the V{S can be positive or negative. Multiplication by Ö, can be replaced by 
the vector product with the angular velocity vector ü> = i{v3 — v2)/W + j[vs — v4)/L where 
the rate of rotation around the x axis (the roll velocity) is LOX = (u3 — V2)/W and the rate of 
rotation around the y axis (the pitch velocity) is wy = (u3 — v4)/L. As noted above, we typically 
have \v{\ < 0.1 m/sec. If we assume that W > lm and L > 2m we have \u>x\ < 0.2rad/sec 
and \u)y\ < O.lrad/sec. The yaw velocity component is \uz\ = ö(vf/y/W2 + L2) which is 

= 0(0.01) rad/sec. (For a complete derivation see [15].) \U: 

The translational velocity vector of the center C of the vehicle is obtained by using the 
velocities vi — v3, v2 — v3, 0, and v4 — v3 for the corners and adding v3 to the velocity in the 



direction of the z-axis. We thus have 

(U\      f-(v4-v3)H/L\ 
f=     ty     =      (V2- v3)H/W     . (7) 

\ U )        \      («2 + v4)/2      j 

If we assume that H < 0.5 m (< W/2) we have \tx\ < 0.05m/sec, \ty\ < O.lm/sec, and \tg\ < 
O.lm/sec. 

We can draw several conclusions from this discussion: (i) The effects of small bumps are of 
short duration, i.e. they can be considered to be impulsive. The suspension elements integrate 
and damp these effects, resulting in a set of out-of-phase oscillatory motions, (ii) The yaw 
component of rotation due to the effect of a bump is very small compared to the roll and 
pitch components, (iii) The translational effects of a bump are proportional to the velocities 
(or displacements) of the suspension elements and the dimensions of the vehicle and are quite 
small. 

2.3    The Sizes of the Smooth and Non-smooth Velocity Components 

We now compare the sizes of the velocity components which are due to the ideal motion of 
the vehicle — i.e., the velocity components of the Darboux frame (Section 2) — to the sizes 
of the velocity components which are due to departures of the vehicle frame from the Darboux 
frame (Section 2.2). 

The translational velocity of the Darboux frame is just vt; thus the magnitude of the trans- 
lational velocity is just v. If v — 10m/sec (= 36km/hrfts 22mi/hr) this velocity is much larger 
than the velocities which are due to departures of the vehicle from the Darboux frame, which, 
as we have just seen, are on the order of O.lm/sec or less. 

The rotational velocity of the Darboux frame is uuy = v(rgt-\- nn\+Kgs)\ thus the magnitude 
of the rotational velocity is VJT£ + K\ + K2

g. In this section we will estimate bounds on r5, 
Kn, and Kg. Our analysis is based on the analyses in [2, 17, 34] and on the highway design 
recommendations published by the American Association of State Highway Officials [1]. 

Good highway design allows a driver to make turns at constant angular velocities, and to 
follow spiral arcs in transitioning in and out of turns, in order to reduce undesirable acceleration 
effects on the vehicle. A well-designed highway turn has also a transverse slope, with the outside 
higher than the inside, to counterbalance the centrifugal force on the turning vehicles. Thus the 
ideal (smooth) motion of a vehicle has piecewise constant translational and rotational velocity 
components, with smooth transitions between them. Note that the translational components 
are constant in the vehicle coordinate frame even when the vehicle is turning, unless it slows 
down to make the turn. 

To illustrate the typical sizes of these components, consider a ground vehicle moving with 
velocity v along a plane curve T on the surface E. If S is a plane and T is a circular arc with 
radius of curvature pg = |K5|

-1
 (i.e., the vehicle is turning with a constant steering angle), the 



angular velocity of the vehicle is väd = VK3S and there is a centripetal acceleration ac = U
2
KSV 

at the vehicle's center [33]. As a result there is a centrifugal force on the vehicle proportional to 
||ac|| and the mass of the vehicle. If skidding is to be avoided the limit on ||ac|| (see [2]) is given 
by 

||ac|| = v2Kg < #(tan a + pa) (8) 

where g is the gravitational acceleration, a is the transverse slope, and p,a is the coefficient of 
adhesion between the wheels and the surface. [Typical values of pa range from 0.8 — 0.9 for 
dry asphalt and concrete to 0.1 for ice (see [34], page 26).] From (8) we have either a lower 
bound on pg for a given v or an upper bound on v for a given pg. For example, if v = 30m/sec 
(RS 108km/hr), a = 0.05rad, and \ia = 0.2 from v2/pg < 0.25g we have pg > 367m. This 
yields an upper bound on the yaw angular velocity of < V\K9\ = v/pg « 0.08rad/sec, which 
is somewhat larger than the yaw angular velocity arising from the departures from Darboux 
motion. 

Other dynamic constraints on a vehicle such as the limits on torques and forces can be 
used to obtain constraints on rg and Kn. (These and other considerations such as safety and 
comfort were used in [1] to make recommendations for highway design; for a summary of these 
recommendations see [15].) For both vertical curves (crossing a hill) and turning curves the 
(recommended lower bound on the) radius of curvature p^n grows with the square of the design 
velocity vj. However, the resulting (design) yaw and pitch angular velocities are limited by 
VdI'Praia- Thus for smaller velocities v the vehicle can negotiate tighter vertical and turning 
curves and thus have even larger values of the yaw and pitch angular velocities. Typical values 
of the roll and pitch angular velocities are given in [15]. 

For realistic vehicle speeds we can conclude the following about the impulsive and smooth 
translational and rotational velocity components of the vehicle [15]. The impulsive effects on 
the translational velocity are approximately two orders of magnitude smaller than the smooth 
velocity components themselves. Impulsive effects on the yaw angular velocity are somewhat 
smaller than the smooth yaw component arising from worst-case turns of the road; for moderate 
turns the impulsive effects are comparable in size to the smooth yaw velocity. Impulsive effects 
on the roll angular velocity are approximately an order of magnitude larger than the smooth 
roll component arising from worst-case twists (and turns) of the road; for gentler twists the 
smooth roll velocity is even smaller. Similarly, impulsive effects on the pitch angular velocity 
are approximately an order of magnitude larger than the smooth pitch velocity arising from 
worst-case changes of vertical slope (i.e., vertical curves) of the road; for gentler vertical curves 
the smooth pitch angular is even smaller. (The impulsive effects are not significantly affected 
by turns, twists, or vertical slope.) We can thus conclude that impulsive effects on the roll and 
pitch angular velocities are significant and larger than the corresponding smooth velocities, and 
that impulsive effects on the yaw angular velocity are on the order of the smooth yaw velocity. 

2.4    Camera Motion 

Assume that a camera is mounted on the vehicle; let dc be the position vector of the mass center 
of the vehicle relative to the nodal point of the camera The orientation of the vehicle coordinate 
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system C£rj( relative to the camera is given by an orthogonal rotational matrix (a matrix of 
the direction cosines) which we denote by Rc. The columns of Rc are the unit vectors of the 
vehicle coordinate system expressed in the camera coordinate system. We will assume that the 
position and orientation of the vehicle relative to the camera coordinate system do not change 
as the vehicle moves. Thus we will assume that Rc and dc are constant and known. 

Given the position pe of a scene point E in the vehicle coordinate system C£r](, its position 
re in the camera coordinate system is given by 

—* 
re = Rcpe + dc 

Since Rc and dc are constant we have re = Rcpe. The velocity of E is given by 

i = -co x % - f. (9) 

In this expression, the rotational velocity is ü = RCüJV (see (5)), and the translational velocity 
—» —» —t —* 

is T = RCTV + u x dc (see (4)), where uv and % are the rotational and translational velocities of 
the vehicle coordinate system. 

We saw in Section 2.3 that both \\vLod\\ and \\uv/d\\ are C*(0.1)rad/sec. The factors Rc and 
—» 

R^u do not affect the magnitude of either u or T. Thus the two components of rotational 
velocity have comparable magnitudes. 

As regards the translational components, note that for normal speeds of the vehicle (v > 
10m/secRi 22mi/hr), typical suspension elements, and the camera mounted on the vehicle close 

to the center of mass we have (see Section 2.3) \\dv/d\\ = C(0.025)m/sec, \\dv/d\\ = C(0.1)m/sec, 
and \\dc\\ = 0(l)m/sec. The magnitudes of the translational velocity components are thus 
\\vwd x dv/d\\ < v\\ud\\ \\dv/d\\ = e>(0.0025)m/sec; ||ut|| = v = C(10)m/sec; and \\u x dc\\ < 
||ü5|| ||c?c|| = C?(0.1)m/sec. Therefore, the dominant term in the expression for T is vt since it is 
two orders of magnitude larger then any of the other three terms of T. 

2.5    Independently Moving Vehicles 

We are interested in other vehicles that are moving nearby. We assume the other vehicles are all 
moving in the same direction. To facilitate the derivation of the motion equations of a rigid body 
B we use two rectangular coordinate frames, one [Oxyz] fixed in space, the other {Cx\y\Z\) fixed 
in the body and moving with it. The position of the moving frame at any instant is given by the 
position d1 of the origin C\, and by the nine direction cosines of the axes of the moving frame 
with respect to the fixed frame. For a given position p of P in Cx\y\Z\ we have the position rv 

of P in Oxyz 
% = Rp + dx (10) 

where R is the matrix of the direction cosines (the frames are taken as right-handed so that 
det R = 1). The velocity rp of P in Oxyz is given by 

rp = ui x (rp - dt) + dv (11) 
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where d\ is the translational velocity vector and Cj\ = {ux ojy UJZ)
T
 is the rotational velocity 

vector. 
—* 

From Section 2.3 we have for a typical vehicle ||ü$i|| = ö(0.1)rad/sec and \\rp — di\\ = 
0(l)m. We thus have \\oii x (rp - <Ji)|| < ||ä$i|| \\rp - <£|| = 0(0.1)0(1) = O(0.1)m/sec. For 

—* 
the translational velocity we have ||c?i|| = u; for normal speeds of the vehicle ü>10m/sec « 
22m/sec so that ||di|| = (9(10)m/sec. We can conclude that for any point P on the vehicle the 
translational velocity is two orders of magnitude larger than the rotational velocity. 

If we make the fixed frame Oxyz correspond to the camera frame at time t we have from (9) 
and (11) that the velocity of a point P on the vehicle expressed in the camera frame is given by 

rp = -w x tp + ü5J x (rp -di)-f + <&. (12) 

In (12) the vector — T + di corresponds to the relative translational velocity between the camera 
and the independently moving vehicle. Regarding the first and the second terms on the r.h.s. 
of (12) we can see that for comparable rotational velocities u and üj\ the first term will dominate 
the second term since usually ||^, — di\\ <C \\rp\\. We will use this observation later. 

3    Image Motion 

3.1    The Imaging Models 

Let {X, y, Z) denote the Cartesian coordinates of a scene point with respect to the fixed camera 
frame (see Figure 3), and let (x,y) denote the corresponding coordinates in the image plane. 
The equation of the image plane is Z = f, where / is the focal length of the camera. The 
perspective projection onto this plane is given by 

fX fY 
X=
^    y = ^- (13) 

For weak perspective projection we need a reference point (Xc, Yc, Zc). A scene point (X, Y, Z) 
is first projected onto the point (X: Y, Zc); then, through plane perspective projection, the point 
(X, Y, Zc) is projected onto the image point (x, y). The projection equations are then given by 

3.2    The Image Motion Field and the Optical Flow Field 

The instantaneous velocity of the image point (re, y) under perspective projection is obtained by 
taking the derivatives of (13) and using (9): 

XZ-XZ      -Uf + xW xy fx2       \ ,   N x   =    ^i = ^ + wx-r-wy \-j + /I +wzy, (15) 
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Figure 3: The plane perspective projection image of P is F = f(X/Z,Y/Z,l); the weak per- 
spective projection image of P is obtained through the plane perspective projection of the 
intermediate point Px = (X, Y, Zc) and is given by G = f(X/Zc, Y/Zc, 1). 

YZ-YZ    -Vf + yW ,      (y*r\       xy 
y   =    -^ = ^ +w*ly + /) -uy-j-uzx. (16) 

The instantaneous velocity of the image point (x, y) under weak perspective projection can 
be obtained by taking derivatives of (14) with respect to time and using (9): 

.XZC-XZC      -Uf + xW      .     Z 
x   =   / = = Yc M^ + u,4/, 

V   =   / 
YZC - YZC 

21 
■Vf + yW + M ■u,x. 

(17) 

(18) 

Let Tand j*be the unit vectors in the x and y directions, respectively; f = xi + yfis the 
projected motion field at the point f = xi + yj. If we choose a unit direction vector nr at the 
image point r and call it the normal direction, then the normal motion field at r is rn = (r-nr)nr. 
nr can be chosen in various ways; the usual choice (as we shall now see) is the direction of the 
image intensity gradient. 

Let I(x, y, t) be the image intensity function. The time derivative of / can be written as 

dl dldx dldy        dl        fr - .    T  -\     f- ,    --\   ,    T T7 T     '->  ,    T 

where VI is the image gradient and the subscripts denote partial derivatives. 

If we assume dl/dt = 0, i.e. that the image intensity does not vary with time, then we have 
VI • u + It = 0. The vector field ü in this expression is called the optical flow. If we choose the 
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normal direction nr to be the image gradient direction, i.e. nr = V//||VJ||, we then have 

-ItVI 
Hn = (u • nr)nr =—j- (19) 

where un is called the normal flow. 

It was shown in [31] that the magnitude of the difference between un and the normal motion 
field fn is inversely proportional to the magnitude of the image gradient. Hence rn « un when 
|| VJ|| is large. Equation (19) thus provides an approximate relationship between the 3-D motion 
and the image derivatives. We will use this approximation later in this paper. 

3.3    Estimation of Rotation 

We now describe our algorithm for estimating rotation. In this section we give only a brief 
description of the algorithm. A full description and a proof of correctness will be given in a 
forthcoming paper. We shall use the following notation: Let / be the image intensity at r, and 
let nr = nxT+ny] = V7/|| V/|| be the direction of the image intensity gradient at f. The normal 
motion field at f is the projection of the image motion field onto the gradient direction nr and 
is given by rn = (f • nr)nr. From (15-16) we have 

rn ■ nr = nxx + nyy = — [nx(-Uf + xW) + ny(-Vf + yW)) 

+ xy fy2      .^ 
nx— + riy I -T + / OJr. 

(x2       \ xy njj + f UnyJ uy + (nxy - nyx)uz   (20) 

The first term on the r.h.s. of (20) is the translational normal motion ft • nr and the remaining 
three terms are the rotational normal motion rw • nr. From now on we will assume that the 
camera is forward-looking, i.e. that the focus of expansion (FOE) is in the image. 

The normal flow at f is defined as —7t/||VJ||. From [31] we know that the magnitude of the 
difference between the normal flow field and the normal motion field is inversely proportional 
to the gradient magnitude; we can thus write 

fn • Hr = ft ■ nr + fu ■ nr = -—^- + O^VIW1) = un-nr + OdlV/H"1). (21) 

If the camera motion is a pure translation the image motion field is a radial pattern; the 
magnitude of each image motion vector is proportional to the distance of the image point from 
the focus of expansion {FOE) and inversely proportional to the depth of the corresponding scene 
point. If the position r0 = ix0 + jy0 of the FOE is known the translational motion field can be 
obtained from the translational normal motion field by multiplying each of ft ■ nr by a vector 
whose direction is (f—f0) and whose magnitude is inversely proportional to the angle between 
the normal flow and the normal motion vector. The translational motion field is then given by 

«=K-%^br (22) 
12 



Note that if we knew w we could compute the rotational motion field rw and the rotational 
normal motion fw • nr and use (21) to obtain 

ft • nr « u • nr — fu • nr. (23) 

If we combine (22) and (23) we have 

(f-f0) rtx, [u ■ nT - rw • nT) jz,—^r—- v ' (r - r0) • n. 
(24) 

If the FOE is known or can be estimated, we can use (24) to estimate the rotational velocity- 
vector u> by minimizing Z)f ||^t||2- Indeed, the image motion field in the neighborhood of the 
FOE is composed of the translational image motion and the rotational image motion. The roll 
component of the rotational image motion is orthogonal to the translational image motion, so 
that it increases the magnitude of the image motion field and the normal motion field. The 
yaw and the pitch components of the rotational image motion are approximately constant in 
the neighborhood of the FOE and just shift the position of the singular (zero) point of the flow 
field [14]. Furthermore, the rotational normal motion accounts for most of the image motion 
field at the distant image points [15]. Therefore, if we subtract the rotational image motion, 
the sum of the magnitudes of the resulting (translational) flow field will be minimal. Using (20) 
and (24) we then have 

Ü = argmin^||u • nr - rw ■ nr\\
2 ° . (25) 

to    - \\\r — ro)-nr\\ 

In matrix form this problem corresponds to minimizing \\Aw — b\\ (see [29]) where the rows a; 
of A are given by 

IKr-roJ 
0>i = nj^j + ny (y + /j ;    -nx ( y + /) - nyy;    nxy - nyx 

||(f-fo)-nr 

and the elements 6; of b are given by 

ll(r-ro)|| 

(26) 

b{ = u • rt 
\\(f - f0) ■ nr\\ 

The solution is given by 
u = A+b 

where A+ is the generalized inverse of A (see [29]). 

3.4    Estimating the FOE 

In the case of a forward looking camera and an unknown FOE it is possible to simultaneously 
estimate the FOE and cD. Based on our analysis in Section 2 we observe that, in the case of a 
camera rigidly connected to the vehicle and a scene without independently moving objects, the 
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direction of the translational velocity of the vehicle remains approximately constant throughout 
the image sequence. The rotational velocity w, however, depends on both the geometry of the 
road and the activity of the suspension elements; hence, UJ changes as the vehicle moves. It is 
possible to choose a part of the road without horizontal and/or vertical curves and/or changes 
of lateral slope so that the vehicle rotations correspond to activities of the suspension elements. 
In these cases the rotational velocity components change in an almost periodic manner. If the 
scenes are chosen so that significant parts of images correspond to distant scene points the 
following algorithm can be used to reliably estimate the FOE. 

Given N successive image frames taken by a forward looking camera mounted on a moving 
vehicle we form the following function 

^EEiig.-^-^-^ii2|i(r"i;f°.)L (27) 
k=ii=i III"*     ro)-nr\\ 

where the inside sum is over all normal flow vectors in the Mb. frame, and the outside sum is 
over all frames; the position of the FOE does not change throughout the sequence (N frames), 
but u changes at every frame (hence the index k). We estimate ok, k = 1,..., N, and r0 by 
minimizing <p. 

A straightforward method for minimizing y? corresponds to a nonlinear least squares prob- 
lem. It can be observed from (27) that (p is linear in the w^s and nonlinear in f0. In the 
numerical analysis literature such problems are called "separable nonlinear least squares prob- 
lems" [26]. Several algorithms for solving such problems have been proposed; a unifying feature 
of these algorithms is that they have better performance than standard nonlinear least squares 
algorithms [26] since they are based on solving problems of smaller dimensionality that the 
unseparated problem. 

In this paper we use a simple version of the separable algorithm. We choose an initial r0 and 
solve for the ÜJk vectors. This problem is equivalent to solving N linear least squares problems 
as described in Section 3.3. We then have ük = A^bf. with the AkS and the S^s appropriately 
defined. Once the UkS are estimated we have a nonlinear least squares problem in the two 
components of r0: we need to minimize </? for the fixed cuts. From (27) we then have 

■ ££ 2    IKfi-fo)!!2 .... ro = argT§£a''ii(*--o)-n-,r <28) 
where ctk,i = \\ui • nr — rUk - nr\\. We use the Gauss-Newton algorithm to solve this problem. 
The partial derivatives d(p/dx0 and dip/dyo that are required by the Gauss-Newton algorithm 
are readily obtained from (27-28). 

After solving for r0 we substitute f0 in (27) and solve for the Wfcs; we then use these values 
to solve for r0 again. The process is repeated until f0 converges. A simple test for convergence 
is ||f0(s) — f0(s + 1)|| < 1, where s is the iteration number. 
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3.5    The Image Motion Field of an Observed Vehicle 

From (17-18) we obtain the (approximate) equations of projected motion for points on a vehicle 
under weak perspective: 

Uf-xW 
x   = 

y = 
Vf-yW 

(29) 

zc     ■ _ <*» 
Equations (29-30) relate the image (projected) motion field to the scaled translational velocity 
z-1f = z-\u V W)T. 

Given the point r = xi + j/J*and the normal direction nxT+ nyf, from (29-30) the normal 
motion field rn • n = nxx + nyy is given by 

i . fi = nxfUZ;1 + nyfVZ;1 - {nxx + nyy)WZ;1 (31) 

Let 
/ci \ 

c = (32) c2 

V cs J 

Using (32) we can write (31) as rn ■ ft = arc. The column vector a is formed of observable 
quantities only, while each element of the column vector c contains quantities which are not 
directly observable from the images. To estimate c we need estimates of rn ■ n at three or more 
image points. 

3.6    Estimating Vehicle Motion from Normal Flow 

As in Section 3.5 we use linear least squares to estimate parameter vector c from the normal 
flow. 

In the case of a moving vehicle the parameters of interest are the vehicle's trajectory and its 
rate of approach. The rate of approach 

- "=^ (measured in sec-1) is equivalent to the inverse of the time to collision and corresponds to the 
rate with which an object is approaching the camera (or receding from it). The rate v — 0.1/sec 
means that every second the object travels 0.1 of the distance between the observer and its 
current position. A negative rate of approach means that the object is going away from the 
camera. 

4    Experiments 

In Sections 4.1 and 4.2 we give examples illustrating road detection, stabilization, and vehicle 
detection. In Section 4.3 we present results for several sequences showing vehicles in motion. 
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4.1 Road and Vehicle Detection 

We detect the road region by finding road edges and lane markers. A Canny edge detector is 
applied and Hough-like voting is used to detect dominant straight lines in the image. Each line 
is parameterized by its normal angle a and its displacement d from the center of the image. For 
all possible values of a and d the image is scanned along the corresponding line. The number 
of edge points that are found within a strip along the line, and whose gradient direction is 
orthogonal to the line direction, is taken as the vote for the corresponding point in the a - d 
plane. Among those lines, only the ones with a certain weight and orientation are chosen to be 
road line candidates. 

If several lines with close a and d values are candidates, only the best representative of these 
lines is chosen. The other lines are eliminated by applying local maximum suppression in the a 
- d plane. Note that if the lines represent the two edges of a lane marker, the gradient directions 
will have opposite signs for the two edges. 

Due to perspectivity, the road boundaries and lane marker lines should converge to a single 
point. Candidate lines that do not converge to a single point are not identified as a road or lane 
boundaries. The identified lines are the maximal subsets of candidate lines that all intersect at 
or close to one point (all the intersection points of every pair of the lines are located in a small 
region). 

Figure 4 presents some road detection and vehicle detection results for four different se- 
quences (collected in three different countries). 

4.2 Stabilization 

As was shown in [15] the impulsive effects introduce significant changes in the roll and pitch 
angular velocities (see Figure 5). Figure 6 shows three examples of image sequence stabilization 
by compensating the rotational effects of road bumps. The estimated rotational normal flow 
component (column c) is subtracted from the total normal flow (column b), which yields the 
translational normal flow component (column d) One can see that the translational normal flow 
components at distant points are close to zero. 

The vector of rotation is estimated by using the method based on FOE calculation, as 
described in Section 3.3, or alternatively, by estimating the amount of rotation from the apparent 
shifts of distant points. Two examples of distant point identification, using horizon points, are 
shown in Figure 7. 

4.3 Relative Motions of Vehicles 

After derotating and detecting moving vehicles, we can analyze their motions using the algorithm 
for motion estimation under weak perspective. 

In the first experiment we used an image sequence taken in Haifa, Israel, from a vehicle 
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Figure 4: (a-d) A selected frame from each of four sequences. Top: the input images, 
results of road detection. Bottom: results of vehicle detection. 

Middle: 

following two other accelerating vehicles. The sequence consisted of 90 frames (slightly less 
than three seconds). Figure 8 shows frames 0, 30 and 60, and the corresponding normal flow 
on the vehicles. Figure 9 shows estimated values of UZ~l, VZ~l, and WZ'1 for the central 
(closest) vehicle. These values correspond to the translations of the vehicles relative to the 
vehicle carrying the camera (i.e., in the observer coordinate system). Because of our choice of 
coordinate system the rate of approach v is equal to the negative of WZ'C 

7-1 

The graphs show that the motion components have a simple behavior; before they reach 
their extremal values they can be approximated by straight lines, indicating constant relative 
accelerations. 

In the second experiment we used an image sequence of a van, taken in France, from another 
vehicle following the van [10, 16]. The sequence consisted of 56 frames (slightly less than two 
seconds). Figure 10 shows frames 5, 15, 25, and 35 as well as the corresponding normal flow. 
Figure 11 shows estimated values of UZ'1, VZ~l, and WZ~l. The graph shows that there 
is an impending collision (rate of approach greater than 1 sec-1). Around the 20th frame the 
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Figure 5: (a-b) Two images taken l/15th of a second apart; (c-d) their normal flows. One can 
see the effects of bumps. In the first frame, the flow vectors point downward; in the second, 
they point upward. 

rate of approach becomes zero (as do all the velocity components) and after that it becomes 
negative because the van starts pulling away from the vehicle carrying the camera. A similar 
image sequence was used in [10] in studies of vehicle convoy behavior. 

The third sequence (taken from the IEN Galileo Ferrari Vision Image Library) consisted 
of 26 frames. Figure 12 shows frames 1, 14 and 26, as well as the corresponding normal flow. 
Figure 13 shows estimated values of UZ~l, VZ~*, and WZ~l. The graph shows that the W 
component of the translational velocity is dominant over the U and V components, which is 
correct for a vehicle that overtakes the observer vehicle and does not change lanes; the two 
vehicles are moving on parallel courses. 

Figure 14 shows frames 1, 26 and 47 of another 48-frame sequence, taken in Haifa, Israel; as 
well as the corresponding normal flow. Figure 15 shows UZ~X, VZ~X, and WZ~X graphs for the 
left (overtaking) and central vehicles. One can see that the graphs differ mainly in the values of 
the W component, since the relative speed of approach for the left vehicle is greater than that 
for the central one. The U and V components are relatively small; all three vehicles are moving 
in the same direction. 

5    Related Work 

5.1    Understanding Object Motion 

Some work has been done on understanding object motion, but this work has almost always 
assumed a stationary viewpoint. Understanding object motion is based on extracting the object's 
motion parameters from an image sequence. Broida and Chellappa [6] proposed a framework 
for motion estimation of a vehicle using Kaiman filtering. Weng et al. [32] assumed an object 
that possesses an axis of symmetry, and a constant angular momentum model which constrained 
the motion over a local frame subsequence to be a superposition of precession and translation. 
The trajectory of the center of rotation can be approximated by a vector polynomial. Changing 
the parameters of the model with time allows adaptation to long-term changes in the motion 
characteristics. 
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Figure 6: Stabilization results for one frame from each of three sequences: (a) Input frame, (b) 
Normal flow, (c) Rotational normal flow, (d) Translational normal flow 

In [16] Duric et al. tried to understand the motions of objects such as tools and vehicles, 
based on the fact that the natural axes of the object tend to remain aligned with the local 
trihedron defined by the object's trajectory. Based on this observation they used the Frenet- 
Serret motion model, and showed that knowing how the Frenet-Serret frame is changing relative 
to the observer gives essential information for understanding the object's motion. Our present 
work is a continuation of this work in a more realistic and complicated scenario, in which the 
camera is also moving. 

5.2    Independent Motion Detection 

Much work has been done on detection of independently moving objects by a moving observer. 
However, the work has been related to detection, classification, and tracking of the motion, and 
has not paid much attention to motion estimation. Clarke and Zisserman in [11] addressed the 
problem of independently moving rigid object detection, assuming that all motions (including 
the camera motion) are pure translations. The idea is to track a set of feature points using 
correlation and movement assumptions derived from the previous frames, and, based on the 
feature point correspondences, determine the epipole (FOE) for the background points as the 
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Figure 7: Identification of distant image points in frames from two sequences. 

intersection of the features' image plane trajectories. The assumption is that a majority of the 
feature points are background points. Moving objects are found by fitting an epipole to those 
feature matches that are not consistent with the background epipole. The image plane extent of 
the moving object is defined by the smallest rectangle enclosing these features. The instability 
of the camera introduces strong rotational components into the relative motion; these are not 
dealt with in [11]. 

Torr and Murray in [30] used statistical methods to detect a non-rigid motion. A five- 
dimensional space of image pixels and spatio-temporal intensity gradients is fit to an affine 
transformation model in a least squares sense, while identifying the outliers to the fit using 
statistical diagnostics. The outliers are spatially clustered to form sets of pixels representing 
independently moving objects. The assumption again is that the majority of the pixels come 
from background points and their movement is well approximated by a linear or affine vector 
field, i.e. the distances to the background points are large compared to the variations in these 
distances. 

Nelson in [23] suggested two qualitative methods for motion detection. The first uses knowl- 
edge about observer motion to detect independently moving objects by looking for points whose 
projected velocity behaviors are not consistent with the constraints imposed by the observer's 
motion. The second method is used to detect so-called "animate motion", which can be found 
by looking for violations of the motion field smoothness over time. This is valid in cases where 
the observer motion changes slowly, while the apparent motion of the moving object changes 
rapidly. 

Irani et al. in [20] used temporal integration to construct a dynamic internal representation 
image of the tracked object. It is assumed that the motion can be approximated by 2D para- 
metric transformations in the image plane. Given a pair of images, a dominant motion is first 
computed and the corresponding object is excluded from the region of analysis. This process 
is then repeated and other objects are found. To track the objects in a long image sequence, 
integrated images registered with respect to the tracked motion are used. 
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Figure 8: Frames 0, 30, and 60 of a sequence showing two vehicles accelerating.  The normal 
flow results are shown below the corresponding image frames. 

Sharma and Aloimonos in [28] demonstrated a method for detecting independent motions 
of compact objects by an active observer whose motion can be constrained. Fejes and Davis 
in [18] used constraints on low-dimensional projected components of flow fields to detect inde- 
pendent motion. They implemented a recursive filter to extract directional motion parameters. 
Independent motion detection was done by a combination of repeated-median-based line-fitting 
and one-dimensional search. The method was demonstrated on scenes with large amounts of 
clutter. 

5.3    Vehicle Detection and Tracking 

In previous work on vehicle detection and tracking by a moving observer, the detection made 
use of model-based object recognition in single frames. Gil et al. [19] combined multiple mo- 
tion estimators for vehicle tracking. Vehicle detection was performed using two features: the 
bounding rectangle of the moving vehicle, where the convex hull of the vehicle is computed for 
every frame and then translated according to the predicted motion parameters, and an updated 
2-D pattern (gray-level mask) based on optimization of the correlation between the pattern and 
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Figure 9: Motion analysis results for the acceleration sequence. U, V, W are the scaled (by an 
unknown distance Z~l) components of the relative translational velocity . 

the image using the motion parameters. These results were obtained using a stationary camera 
mounted above a highway under different road and illumination conditions. 

Betke et al. [3] developed a real-time system for detection and tracking of multiple vehicles in 
a frame sequence taken on a highway from a moving vehicle. The system distinguishes between 
distant and passing vehicle detection. In case of a passing vehicle the recognition is performed 
by detecting large brightness differences over small numbers of frames. 2-D car models are used 
to create a gray-scale template of the detected vehicle for future tracking. Distant vehicles are 
detected by analyzing prominent horizontal and vertical edges. A square region bounded by such 
edges, which is strongly enough correlated with a vehicle template, is recognized as a vehicle. For 
each newly recognized vehicle a separate tracking process is allocated by a real-time operating 
system, which tracks the vehicle until it disappears and makes sure that no other process tracks 
the same vehicle. When one vehicle occludes another, one of the tracking processes terminates 
and the other tracks the occlusion region as a single moving object. 

5.4    Road Detection and Shape Analysis 

Our work also involved detection of the road markings; in doing this we made no significant 
use of motion models. There has been considerable work on road boundary detection in images 
obtained by a vehicle driving on the road. A typical detection procedure involves two steps. 
First the road is detected in a single frame (or in a small number of frames), and then the road 
boundaries are tracked in a long sequence of frames. 

Schneiderman and Nashman in [27] left the first step to a human operator and gave a solution 
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Figure 10: Frames 5, 15, 25, and 35 of the van sequence, 
below the corresponding image frames. 

The normal flow results are shown 

for the second step alone. Their algorithm is based on road markings. In each frame, edge points 
are extracted and grouped into clusters representing individual lane markers. The lane marker 
models built in the first step are updated using the information obtained from successive frames. 
The markers are modeled by second-order polynomials in the image plane. Tracking is exploited 
in the sense that edge points are associated with markers based on a road model formed from 
analysis of the previous frames. Spatial proximity and gradient direction are used as a clues for 
clustering. The marker models are updated to satisfy a least squares criterion of optimality. 

Broggi in [7]-[9] presented a parallel real-time algorithm for road boundary detection. First 
the image undergoes an inverse perspective transformation and then road markings are detected 
using simple morphological filters that work in parallel on different image areas. The inverse 
perspective procedure is based on a priori knowledge of the imaging process (camera position, 
orientation, optics, etc.). 

Richter and Wetzel in [25] used region segmentation for road surface recognition. A road 
model is adjusted to the segmentation results collected from several frames. The adjusted model 
is then used for model-based segmentation and tracking. A special lookup mechanism is used 
to overcome the problem of obstacles and shadows that may cause the segmentation algorithm 
to fail to detect the road regions. 

A sophisticated road model that takes into account both horizontal and vertical curvature 
was suggested by Dickmanns in [12]. A differential-geometric road representation and a spatio- 
temporal driving model are exploited to find the parameters of the road and the vehicle. 
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Figure 11: Motion analysis results for the van sequence. U, V, W are the scaled (by an unknown 
distance Z~x) components of the relative translational velocity . 

6    Conclusions and Plans for Future Work 

Understanding the motions of vehicles from images taken by a moving observer requires a 
mathematical formulation of the relationships between the observer's motion and the image 
motion field, as well as a model for the other vehicles' trajectories and their contributions to the 
image motion field. In this paper a constant relationship between each vehicle's frame and the 
observer's frame is assumed. The use of the Darboux frame provides a vocabulary appropriate 
for describing long motion sequences. 

We have derived equations for understanding the relative motions of vehicles in traffic scenes 
from a sequence of images taken by a moving vehicle. We use the Darboux motion model for 
both the observing vehicle and the nearby moving vehicles. Using a full perspective imaging 
model we stabilize the observer sequence so that our model for the observed vehicles' motions 
can be applied. Using the weak perspective approximation we analyze the nearby vehicles' 
motions and apply this analysis to long image sequences. Expanding our analysis to various 
classes of traffic events [21], and to articulated vehicles, are directions for future research. 
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